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Abstract—In this paper, we describe an algorithm based on a
distribution of contours traced by particle moving in directions
undergoing Brownian meotion for a segmentation problem. We
analyze the properties of the affinity matrix, whose elements are
the edge-to-edge tramsition probabilities, from a mathematical
point of view and give formal proofs. This analysis is essential
because we can use the properties of the affinity matrix to reduce
the amount of computation greatly when selving segmentation
problems, especially for large real images. The results obtained
can be used for robot visual servo to pick multiple objects in the
scene.

1. INTRODUCTION

Many objects in the physical world are bounded by smooth
closed contours. Human visual system is able to perceive
the bounding contours of objects even in the absence of
contrast due to occlusion. In computer vision, we attempt
to emulate the way the human visual system behaves. Given
an input image, we can segment different objects in it based
on a computational model. The purpose of segmentation is
1o partition a set of edges into subsets so that the edges in
different subsets bound different objects in the scene. In this
paper, we call this the segmentation problem.

The segmentation problem has been and still is an important
topic in the field of computer vision. Basically the previous
approaches can be divided into the following categories {5]:

1) Histogram based segmentation
2) Neighberhood based segmentation
3) Surface fitting based segmentation
4) Physically based segmentation

Among these approaches, many of them belong to the neigh-
borhood category. They are based on the properties of pixels
which are used to related to their local neighborhood [4}. The
grouping problem, or the saliency problem mentioned in {14]
is also in the second category. In this paper, we will focus on
the saliency problem.

Many existing approaches (e.g. [7], [8], [15]) have used
graph-based search techniques to find closed contours of
different objects. For the saliency problem, the entries of
the affinity matrix, from which the graph is built, are the
probabilities that a smooth contour passes through a pair of
edges. The affinity values are based on the Gestalt princi-
ples of proximity and smooth-continuation and derive from
the local properties of position and orientation of the two
edges. Mahamud, Williams, Thornber and Xu[7] show that

the effectiveness of these approaches is limited. In addition to
the local properties, i.e. proximity and smooth-continuation,
Mahamud ez gl. [7] use an approach based on global saliency
computation. They use the local affinity measure to compute
a global saliency measure. Concretely, they first compute the
affinity matrix, P, and the eigenvector associated with its
maximum eigenvalue, and then compute a link saliency matrix,
C. Only after the computation of the global saliency measure,
do they use a depth-first-search to find the strongly connected
components [7].

Like the other algorithms for solving the segmentation
probiem, Mahamud’s algorithm requires a large number of
floating point operations. Williams and Thornber [14] first
use the properties of the affinity matrix to reduce the amount
of computation greatly when they try to find the eigenvalue
and eigenvector of the affinity matrix. Unfortunately, although
previous papers [7], [14] mention and use this idea, none of
them give a detailed analysis, formal proof, and an explicit
approach. This is what our paper is to accomplish. In addi-
tion, we first present the symmetric properiies of the affinity
matrix’s submatrices, which have not been intreduced before.
We can reduce computation further by using them when we
build an affinity matrix. We include this analysis here as
complement.

The remainder of this paper is organized as follows: Section
2 analyzes and proves the affinity matrix properties. Section 3
describes the segmentation algorithm. Section 4 gives experi-
mental results, and Section 5 offers concluding remarks.

II. SALIENCY MEASURES AND AFFINITY MATRIX
PROPERTIES

In this section, we define the affinity matrix, the saliency
measure used and present its properties. We then give the
formal proof.

A. Edge-10-edge Transition Probability

Suppose we have an input consisting of N edges. Z; is
the location and ; is the orientation of edge i. Now we add
another N edges. For each edge i, we add edge 7 and let its
location be the same as that of i but its orientation be equal to
{’s orientation plus , that is, £; = ¥ and &; = 8; + «. This
step is necessary because it ensures that a contour arriving in
a given direction must exit in the same direction. Basicaily,
it ensures that tangent continuity is satisfied. Without this
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mechanism, it is possible to obtain a contour containing cusps
(i.e., reversals in direction). Williams and Thornber[14] give
a more detailed explanation.

Given two directed edges, { and j, Williams er al. [14] derive
an expression for the probability, P(j|¢), that a particle moving
with constant speed in a direction given by a Brownian motion
will ravel from edge i to edge j and visit n — 1 intermediate
edges. From [14], we know that P{ji{) is dependent on three
parameters in addition to the locations and orientations of
edges i and j: (1) the half-life 7, (2) the variance T of the
directional change of the particle, and (3) the speed of the
particle, -y, and the locations and orientations of edges i and j.
The half-life, 7, models the principle proximity while the vari-
ance, 7, models smooth-continuation. These three parameters
determine the distribution of shapes.

B. Edge Saliency

In this paper, the saliency of edge [ is defined to be the
relative number of closed contours that pass through this edge.
If we assume that the closed contour begins and ends at edge
i, we can write the definition of saliency as follows

. P
C; = thm ———( l}:f
== (P
where P is the affinity matrix whose elements are the edge-
to-edge transition probabilities given by P(fi¢). Williams and
Thornber [14] have shown that the edge saliency based on the
above definition can be evaluated as
_ T
20 %i%;
where x is the right eigenvector corresponding to the largest
eigenvalue of the affinity matrix, P, and X is the corresponding
left eigenvector. If we do not consider the constant factor,
»_; #4%;, or normalize the eigenvector such that 3 ; z;Z; = 1,
we have ¢; = 2;7;.

Ci

C. Properties of the Affinity Matrix

As mentioned before, the affinity matrix is defined by edge-
to-edge transition probabilities given by P(j17). In this section,
we will analyze and prove its properties.

Lemma 1: If edge i and edge T have an idenrical location
but opposire directions, the affinity matrix P which is created
using the equations described by Williams and Thornber{14]
has the following properties:

1) Py = Pg. This is termed reversal symmetry.

2) In the above equation, we can subsiitute i for T every-

where, and T for i everywhere.

3) By = Py is constant, and Py; =

i =1l..n)

' is constant (for all

Proof: As mentioned before, the affinity, Pj;. is depen-~
dent on three parameters as well as the locations and crienta-
tions of edges i and j. If we focus on these three parameters,
from the expression given by Williams and Thornber{14] we
know that the affinity, Pj;, is determined by three factors

related to the locations and orientations of edges i and j. Let
these three factors be a, b, ¢:

2 +cos(f; ~ 8;)

- Z'J'L'(C()ng +cosd;) + yji(sinf; + sin 6;)
Y
_ (=} +v5)
¢ —z
Ty = Bj—X;
Yiio = Yj — Y-

Given the above equations, the proof is very straightforward.
We just substitute x; = g, 9; = ¥z, and 87 = 8; + 7 into the
above three equations. In this way, we can prove Fy; = Fy,
Py = Py and Pj; = Pj;. Finally, since 8; = 6; + 7. ay; and
by; are constant. Therefore, Property 3 is proved. Note that
the reversal symmetry property means that the probability that
any particle travels along a curve starting from edge, j, and
ending in edge, i, is the same as that of a particle traveling
from edge, 7, to edge, 7. »

Consider an input pattern consisting of N edges. We con-
struct a set of 2N states, S. For each edge, 7, in the input
pattern, there are two states, { and %, in S. If we arrange the
set, §, so that the order of the first half of the 2N elements
is the same as the input order (i.e., edge i's) and the second
N of the 2N elements are edges with opposite directions to
each element in the first half (ie., edge ©’s), we obtain the
following lemma:

Lemma 2: Given an inpur vector A[1..2N] as described
above, if we use the following loops
Jorli = 1;i < 2N+ +)
forlj = 133 < 2Ny + 4)
P(ij) = function( Ali}, A[j))
to create the affinity matrix, we obtain P as follows:

p= [ {P;;} {Py} ]

{17} Py}
where ) ;
P P Py
Py P Py
{Py} = : : :
| Pv1 Pyz Pyy |
i Pﬁ P1§ PlN ]
Py P P
{Fig} = : : :
L Pvt Pas Pyx |
- P P Piy ]
P5 Py Py
{Py} = : : :
L Px1 Pre Pyn ]




Py Py - Pp

h Py Py -+ Py
{Pgr=1 . : )

Pri Pz Prs

Proof: The given loops implement the product of a 2N x
1 matrix and a 1 x 2NV matrix, i.e., an outer product. Assume

the input vector to be
{21 =z zv | oz 73

Then the above loops perform

T

x2

i

I’: {2 =2 zn | Tp @ Ty )
T3

ThE

to create a matrix of the form:
P= [ {Py} {Py} ] _
{Pt P}
u

Using the above definition for P matrix, we can obtain the
{Py} {Ps} ]

following lemma.
P =
[ {F} {Pg}

Lemma 3: If
is defined in the same way as Lemma 2, we have the following:

1) The submatrices, {F;;}, and, {Py;}, are symmetric.

2) The elements in the upper trigngle of {Py;} are equal
to those in the lower triangle of {Pg}. and that the
elements in the lower triangle of {Py;} are equal to
those ;;n the upper triangle of {Py}, ie. thar {P;} =
{Pg}"

Proof: From the Lemma 1 we know that P;; = FPg.

Therefore,
{Py} = {P5}".

Now we prove that the submatrix, {F;;}. is symmetric. In
equation Fj; = P, if we substitute 7 for 4, we have Py = FPy.
‘We will use this relation in the following proof. The submatrix,
{P;}, is located in the lower-left quadrant of P. Imagine that
we move this submatrix to the upper-left quadrant to overwrite
the original upper-left one. This movement cannot change the
symmetric property of the submatrix { F;} because we do not
change the values of the elements of the submairix. Recall
that we arrange the set of input edges, S, so that the order
of the first half of the 2/ elements is the same as the input
order (i.e., edge i’s) and the second N of the ZN clements
are edges with opposite direction to each element in the first
half {i.e., edge 7°8). Therefore the index 7 = i + N, and the

index 7 = j + N. From By = Py, we have Pyiny; =
P4 n3);- If we perform the movement just described, we have
P(i—i—.N—N)j = P(j+N—}V)i: which is PU = mpji. ThETefOTe,
the shifted submatrix is symmetric. It follows that the original
submatrix is symmetric. Similarly, we can show that {P;;} =
{Fis}". =
Theorem 1: Suppose we use the method described in
Lemma 2 to construct the affinity matrix P and x is an
eigenvector of P associated with eigenvalue, A\, where

T
x=( zy | TN ToN )

Then the eigenvector of PT associated with the same eigen-
value A is

TN )T

Proof: Since we use the same method as Lemma 2 to
construct the affinity marrix, it follows that

P = [ {Pij} {Pﬁ} }

{Py} {Pg}
where {P;;}, {Pi;}, {F;} and {P;} are four N x N matrix
whose elements are Fj;, Py, F%; and P respectively. Let x
be an eigenvector of the matrix, P,

= (2)

where x5 consists of the first ¥ elements of the vector x and
X2 consists of the second N elements of the vector x.

From Px = Ax, we have

e G ()= (%)
which is equlivalent to

L () =(2)
From Lemma 3, we obtain
[ {Ps} {Py} ] _ [ {Ps}" {Py}T ] _

($N+1 ITN42 TaN | Ty T2

{Pg} {Ps} | | {Ps}" {Ps}T
Therefore,
LB ()= ()

Finally, since

o[ B0 (2]

(P} {Pg}”
we finish our proof. =

Note that it is necessary to use ¥ notation to represent some
elements of the eigenvectors in order to define link saliency
in the next section. We use x to represent the eigenvector
of the matrix, P, and ® to represent the eigenvector of the
matrix, PT. In addition, we use i to represent the index which
is between 1 and N, and 7 to represent the index which is
between N and 2N. For example, Fy is the {7+ N)-th element



of the eigenvector of the PT matrix. With this notation, we
obtain 5; = s; and 5 = s; directly from the above theorem.
Now we can simplify the edge saliency definition. Recall

that N
Tilq

Ci = ¥~
Z:j ZTi&j
which involves both the right and left eigenvectors. With the

relation between x and X, we can rewrite the edge saliency

definition as
- LT (£ N) mod NV

i —_—
Ej TiE(jN) mod N

which is only dependent on the right eigenvector with largest
positive real eigenvalue of affinity matrix, P, Without solving
the left eigenvector, we can save much running time.

Actually, we can reduce computation further using the
following theorem.

Theorem 2: For the P matrix, there are only 2N 2L9N12
distinct elements.

Proof: 'This can be demonstrated quite easily. From
Lemma 3, we know that submatrices {P;;} and {P;;} are
symmetric. We also know that the elements in the upper
triangle of {P;;} are equal to those in the lower triangle of
{P;}, and that the elements in the lower triangle of {F;;} are
equal to those in the upper triangle of {F;;}. Therefore, if we
do not consider the diagonal elements of the four matrices,
then the total number of distinct elements is 2N2 — 2N,
In addition, we also can see that the diagonal elements of
matrix P are constant and so are the diagonal elements
of the submatrices {P;;} and {P;;}. These results are the
consequences of Lemma 1. Finally, we have 2N? — 2N + 2
distinct elements. ]

Tt should be note that the idea of Theorem 1 was first intro-
duced in [14]. Here we give the formal proof as complement.
Theorem 2 is new and has not been presented before.

D. Link Saliency

Suppose we begin at edge i, immediately visit edge j, and
then eventually return 10'i. We have the following mathemat-
ical expression:

Pn_l ol - P af e
o= i PGP
Williams and Thornber{ 14] solved this expression
_ E:Pyzy
= Tt
If we use the approach mentioned in the previous sections and

we normalize the eigenvectors so that 3, z;%; = 1, we can
simplify the above expression as follows:

C. = T{i4.N) mod NPz‘j:L'j.
A
which is only dependent on the right eigenvector.
As with the P matrix, the C matrix has many interesting
properties.

Theorem 3: The C matrix created using the above equation
has the following properties:

1} Conservation property: The number of closed contours
entering edge i equals the number of closed contours
leaving edge i.

2) Reversal symmetry property: Cy; = Cg

3) In the above equarion, we can substitute | for T every-
where, and T for i everywhere.

Proof: For convenience, we suppose Zimi:fi = 1
This assumption involves no loss of generality because any
eigenvector can be normalized so ihat it has unit length.
Property / has been shown by Williams and Thornber[14].
We prove Properties 2 and 3. Recall that Pj; = P, &; = x;
and Z¢ = x;. Thus, it is easy to verify that

O = i'ijj.ij.?;j _ .’L‘}:Rﬁfj—. _ :E‘;Pﬁxg
ij = = =

A A A
In P;; = Pj;, we can substitute ¢ for T everywhere, and 7 for
i everywhere. Thus, we can obtain Pjy = Pj; and Py; = Py
directly from F;; = Py. Therefore,

= Cyp.

YU T Ty Ty T
Similarly, we can show that Cy; = Cy;, and thus Property 3
is proven. ]

ITI. SEGMENTATION ALGORITHM

Mahamud er al[7} use an approach based on a global
saliency measure, called link saliency, which is related to the
relative likelihood that closed contours pass through edges j
and i successively. They first compute the affinity matrix, P,
and the eigenvector associated with its maximum eigenvalue,
and then compute the link saliency matrix, C. Recall that
the link saliency is the relative number of closed contours
which visit edge i and j in succession. It provides a measure
of whether two edges are salient, i.e., the likelihood that
a contour passes through the pair of edges.Thereore, the
link saliency matrix is used to create a directed graph. The
segmentation problem is reduced to the problem of finding
strongly-connected components of this graph. They can be
found using generic graph search techniques such as depth-
first-search or modified depth-first-search.

We can find all the strongly-connected components at once.
Unfortunately, not all of the components found in this way
provide reliable segmentations. The reason is that the dominant
contours tend to suppress the saliencies of all of the other
contours, and therefore its saliencies suppress the saliencies
of less dominant contours. The other way is 1o extract out the
contours one by one. We first extract cut the most dominant
contour which passes through the most salient edge. The
strongly-connected component containing this most dominant
contour is the set of edges reachable from the most salient
edge. This set of edges can be easily found using depth-
first-search of the directed graph. After extracting out the
dominant component, we suppress it to find the next dominant
component. To suppress the current component, we deflate
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the affinities of all links among the edges in the strongly-
connected component. For example, if edges, / and j are edges
in the component, we deflate the link i — 7 by setting Fj; == 0
and Pr = 0. We iterate the process of depih-first search
followed by deflation until all components are isolated.

Due to noise, strongly-connected components which include
edges.of the current most salient object may also contain edges
which belong to less salient objects or to the background.
We can eliminate these undesirable edges using an important
property of strongly-connected components, namely that, the
transpose a directed graph G = (V,E) has exacily the
same strong connected components as those of G. Using the
reversal-symmetry property, we can implement this operation
as follows[7]: (1) Find A, the set of edges reachable from the
most salient edge, 4i; (2) Find A, the set of edges reachable
from the edge, 7; and (3) Find the intersection of the two sets,
ANA

IV. EXPERIMENTAL RESULTS

To verify the properties of the affinity matrix and algorithin,
we conducted experiments with two real images. In the first
segmentation experiment,we did not consider the properties of
the affinity matrix when we built it and solved its eigenvalue
problem. The second segmentation experiment is the same
as the first one except that at this time we considered the
properties of the affinity matrix when building the matrix, and
finding its eigenvalue and eigenvector. The number of edges
returned by the Canny detector was found to be prohibitively
large. To reduce the running time, we subsampled the input
edges with no sacrifice in comparison. After the input edges
were sampled, the two affinity matrix sizes are 898 x 898
and 3044 x 3044. The three parameters which determine the
distribution shapes are 7y = .15, T' = 0.004, and = = 5.0.
We repeated each experiment 10 times and found the average
running tmes. In the first experiment, it took about 4.37
seconds to segment each pear, and about 34.20 seconds to
segment each coin while in the second experiment it only took
2.28 seconds, and 17.24 seconds respectively. The average
running times were reduced to 47.9% for Pears Segmentation,
and to 49.6% for Coins Segmentation. Because the matrix

©

Double Pears. (a} Original image. (b) Edge input obtained by Canny detector. (c) Segmented contours numbered in the order in which they are

size for coins segmentation is larger than that for pears
segmentation, it ook more time to segment each coin. The
original image, edge input obtained by Canny detector, and
segmented contours cutput numbered in the order which they
are extracted for these experiments are shown in Figure 1 and
Figure 2.

V. CONCLUSIONS

The purpose of segmentation is to partition a set of edges
into subsets so that the edges in different subsets bound differ-
ent objects in the scene. Thornder and Williams{14]’s analytic
expression which characterizes the probability distribution of
boundary-completion shapes provides the basic foundation for
solving the segmentation problem. In this paper, we analyzed
and proved the properties of the affinity matrix of Williams
and Thomber. The experimental results show that using these
properties we can reduce up to 50% running time. This was
significant for improving computational efficiency. It is also
significant in robot visual servo, which needs quick response.
In the future, we will try to improve efficiency further and
apply this algorithm into visual robot control system to pick
multiple objects in the scene.
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